

Using Participatory System Dynamics Modeling of Agricultural-Environmental Systems in a Rural Development Context

> Robert B. Richardson & Laura Schmitt Olabisi Michigan State University

Innovations in Collaborative Modeling June 14, 2016

- Project objectives
- Major trends in Zambia
- Participatory system dynamics modeling
- Results: models of deforestation
 - National- and provincial-level baseline
 - Drivers of deforestation
 - Scenarios
 - Maize yield increase
 - Policy scenarios

Acknowledgements: Philip Grabowski, Naomi Sakana, & Kurt Waldman

Global Context for Project

- World population to reach 9 billion by 2050
- Global need to increase food production 50-70%
- Yet, agriculture is

RISING

- largest emitter of greenhouse gases (~30-35% of total)
- largest consumer of freshwater resources
- largest user of land resources (~38% of total)
- greatest contributor to biodiversity losses

Foley et al., 2011

Global Context for Project (continued)

- Agricultural intensification
 - Increase food production
 - Without increasing deforestation
 - Limiting impacts to biodiversity
 - Adapting/mitigating the impacts of climate change
- Sustainable intensification
- What are the impacts and linkages on the landscape?

Project Objectives

- Project: Impact of Sustainable Intensification on Landscapes and Livelihoods (SILL)
- Examine the potential for *sustainable intensification* of agriculture to contribute to forest conservation in Zambia
- Pilot sites: Eastern and Lusaka Provinces, Zambia
- Participatory system dynamics modeling activities in 2014-15

Acknowledgements: Philip Grabowski, Naomi Sakana, & Kurt Waldman

Major Trends in Zambia

- Relatively low population density
- Population growth
 - Projected to triple by 2050 to 43 million, increase 10x by 2100
- High rates of urbanization
 - Increasing demand for food and energy
- High rates of deforestation
 - 150,000-300,000 ha/year
 - Leading cause of greenhouse gas emissions

With the second se

Implications

- Food security demand for food
- Demand for cropland
 - Conventional wisdom: practice of cultivating maize monoculture depletes soils
 - Farmers migrate to land abundant areas
 - Deforestation is driven by clearing land for agriculture
- Degraded soils
- Low non-farm rural employment

Agricultural Practices and Deforestation

- Dominant narrative: deforestation is mostly driven by smallholder farmers facing weak yields in degraded soils who abandon their fields and clear new land
- Hypothesis: sustainable intensification (SI) practices that increase yields or produce fuelwood will reduce deforestation pressures
 - Conservation agriculture: increased yields will reduce need for land conversion
 - Agroforestry: on-farm fuelwood production will reduce demand for forest resources

Participatory Systems Modeling

RISING

- Participatory system dynamics modeling was used to elicit stakeholder views of the system and how it operates, and to use that information to inform the construction of the model.
- It can be a useful tool for identifying the primary drivers of change in complex agro-ecological systems.
- The approach also allows for examining hypothetical or alternative scenarios.

Participatory Modeling Process

- Identify partners and stakeholders
- Introductory workshop (generate causal loop diagrams)
- Review literature and data sets
- Build national-level model of deforestation in Vensim[®]
- Participatory modeling workshop (refine parameters)
- Build provincial-level model (Eastern and Lusaka Prov.)
- Final workshop and report
- Total timeline: ~ 15 months (May 2014 August 2015)

Participants

- Indaba Agricultural Policy Research Institute (IAPRI)
- BioCarbon Partners
- COMACO
- CIFOR

sica RISING

- CIMMYT
- ICRAF
- ICRISAT
- IITA
- Michigan State University
- South Luangwa Conservation Society

- The Nature Conservancy
- TGCC/TetraTech
- Total LandCare
- USAID
- University of Zambia
- WWF
- Zambia Agriculture Research Institute
- Zambia Carnivore Research
- Zambia Forestry Department

Causal Loop Diagrams

Economic security feedback loop

Forests in Zambia

- Modeled drivers of deforestation
 - Integrated Land Use Assessment (FAO, 2008)
- Two types of forests represented in model:
 - Deciduous and evergreen forests
 - Miombo woodlands
- Forests resources used widely for multiple purposes
 - Urban households depend on charcoal for affordable cooking fuel
 - Rural households depend on fire wood for cooking fuel
 - Rural households may produce and sell charcoal as a coping strategy during periods of weak crop yields

Deforestation in Zambia

Sources of deforestation represented in model:

- Clearing land for agriculture
- Charcoal production

sica RISING

- Fuelwood collection
- Home construction
- Commercial timber

National-level Baseline Model

Forest Cover

Miombo woodland

14% loss

National Model

Deforestation by Driver

National Model

Miombo Clearing by Driver

Lusaka Province Baseline

Lusaka Province Model Deforestation by Driver

Lusaka Province Model

Miombo Clearing by Driver

Effects of Maize Yield Increase

Maize yields increase at 3x their current rate - *no effect on deforestation*.

Effects of Drought

A drought affecting 70% of agricultural area occurs every 40 years, and 40% of area every 8 years. Farmers turn to charcoal production for income in years in which their crops are affected. If farmers engage in CA, they are not affected. *No effect on deforestation*.

Effect of Full Electrification

Effect of Fuel-Efficient Stoves

Eastern Province Baseline

Eastern Province Model

Deforestation by Driver

Eastern Province Model

Miombo Clearing by Driver

Effects of Maize Yield Increase

Maize yields increase at 3x their current rate - *no effect on deforestation*.

Effects of Drought

A drought affecting 70% of agricultural area occurs every 40 years, and 40% of agricultural area every 8 years. Farmers turn to charcoal production for income in years in which their crops are affected. If farmers engage in CA, they are not affected.

Effect of Full Electrification

Effect of Fuel-Efficient Stoves

Conclusions

- Charcoal production and clearing for agriculture are both important drivers of deforestation
 - Charcoal currently dominates in Lusaka
 - Clearing for agriculture currently dominates in Eastern
 - Charcoal expected to dominate in both provinces in the future
- Clearing land for agriculture is driven by *rural population growth*, not low yields or land abandonment
- Charcoal production is driven by *urban population growth* and *energy demand*
- Participatory system dynamics modeling can be a useful tool for identifying the *primary drivers of change* in complex agroecological systems

Thank You

Africa Research in Sustainable Intensification for the Next Generation **africa-rising.net**

The presentation has a Creative Commons licence. You are free to re-use or distribute this work, provided credit is given to ILRI.